Absorption of quantum wells

For modelling the optical properties of QWs we use the method described by S. Chuang ([1]). The absorption coefficient at thermal equilibrium in a QW is given by:

\label{eq:QW_abs2}
\begin{split}
\alpha_0(E) & = C_0(E) \sum_{n,m} |I_{hm}^{en}|^2 | \hat{e} \cdot \vec{p} |^2 \rho_{rmn}^{2D} \\
& \times \left[ H(E-E^{en} + E_{hm}) + F_{nm}(E) \right]
\end{split}

where |I_{hm}^{en}|^2 is the overlap integral between the holes in level m and the electrons in level n; H is a step function, H(x) = 1 for x>0, 0 and 0 for x<0, \rho_{rmn}^{2D} is the 2D joint density of states, C_0 a proportionality constant dependent on the energy, and F the excitonic contribution, which will be discussed later.

\begin{aligned}
\label{eq:qw_abs}
C_0 (E) & =    \frac{\pi q^2 \hbar }{n_r c \epsilon_0 m_0^2 E} \\
\rho_r^{2D} &= \frac{m_{rmn}^*}{\pi \hbar L}\end{aligned}

Here, n_r is the refractive index of the material, m_{rmn} = m_{en} m_{hm} / (m_{en} + m_{hm}) the reduced, in-plane, effective mass and L an effective period of the quantum wells. The in-plane effective mass of each type of carriers is calculated for each level, accounting for the spread of the wavefunction into the barriers as ([2]):

\begin{aligned}
\label{eq:in_plane}
m_{\perp} =  \int_{0}^{L} m(z) | \psi(z) |^2\end{aligned}

This in-plane effective mass is also used to calculate the local density of states shown in Figure [fig:qw]b. In Eq. [eq:QW_abs2], | \hat{e} \cdot \vec{p} |^2 is the momentum matrix element, which depends on the polarization of the light and on the Kane’s energy E_p, specific to each material and determined experimentally. For band edge absorption, where k = 0, the matrix elements for the absorption of TE and TM polarized light for the transitions involving the conduction band and the heavy and light holes bands are given in Table [tab:matrix_elements]. As can be deduced from this table, transitions involving heavy holes cannot absorb TM polarised light.

  TE TM
c-hh 3/2 M_b^2 0
c-lh 1/2 M_b^2 2 M_b^2

Table: Momentum matrix elements for transitions in QWs. M_b^2=m_0 E_p /6 is the bulk matrix element.

In addition to the band-to-band transitions, QWs usually have strong excitonic absorption, included in Eq. [eq:qw_abs] in the term F_{nm}. This term is a Lorenzian (or Gaussian) defined by an energy E_{nmx, j} and oscillator strength f_{ex, j}. It is zero except for m=n \equiv j where it is given by Klipstein et al. ([3]):

\begin{aligned}
F_{nm} &= f_{ex, j} \mathcal{L}(E - E_{nmx, j}, \sigma) \\
E_{nmx, j} &= E^{en} - E_{hm} - \frac{R}{(j-\nu)^2} \\
f_{ex, j} &= \frac{2R}{(j-\nu)^3} \\
R &= \frac{m_r q^4}{2 ( 4\pi \epsilon_r \epsilon_0)^2 \hbar^2 }\end{aligned}

Here, \nu is a constant with a value between 0 and 0.5 and \sigma is the width of the Lorentzian, both often adjusted to fit some experimental data. In Solcore, they have default values of \nu = 0.15 and \sigma = 6 meV. R is the exciton Rydberg energy ([1]).

Fig. [fig:QW_absorption] shows the absorption coefficient of a range of InGaAs/GaAsP QWs with a GaAs interlayer and different In content. Higher indium content increases the depth of the well, allowing the absorption of less energetic light and more transitions.

../_images/qw_absorption.png
solcore.absorption_calculator.absorption_QW.exciton_rydberg_energy_2d(me, mh, eps_r)[source]
Parameters:
  • me – electron effective mass (units: kg)
  • mh – hole effective mass (units: kg)
  • eps_r – dielectic constant (units: SI)
Returns:

The exciton Rydberg energy

solcore.absorption_calculator.absorption_QW.exciton_bohr_radius(me, mh, eps)[source]
Parameters:
  • me – electron effective mass (units: kg)
  • mh – hole effective mass (units: kg)
  • eps – dielectic constant (units: SI)
Returns:

Exciton Borh radius

solcore.absorption_calculator.absorption_QW.alpha_c_hh_TE(E, z, E_e, E_hh, psi_e, psi_hh, well_width, me, mhh, Ep, nr)[source]

Absortion coefficient for incident light forming a transision between hh and c band of a quantum well

NB. Assumes that valence band is a zero energy, might need to manually apply an offset.

Parameters:
  • E – photon energy (units: J)
  • z – mesh points along growth direction (units: m)
  • E_e – Electron state energy (units: J)
  • E_hh – Heavy hole state energy (units: J)
  • psi_e – Electron envelope function (psi_e^2 must be normalised)
  • psi_hh – Heavy hole envelope function (psi_hh^2 must be normalised)
  • well_width – (units: m)
  • me – electron effective mass (units: kg)
  • mhh – heavy hole effective mass (units: kg)
  • Ep – the Kane parameter “Optical dipole matrix elemet”, sometimes “Momentum matrix element”, e.g. Ep for GaAs ~ 28eV
  • nr – refractive index
Returns:

solcore.absorption_calculator.absorption_QW.alpha_c_lh_TE(E, z, E_e, E_lh, psi_e, psi_lh, well_width, me, mlh, Ep, nr)[source]

Absortion coefficient for incident light forming a transision between hh and c band of a quantum well

NB. Assumes that valence band is a zero energy, might need to manually apply an offset.

Parameters:
  • E – photon energy (units: J)
  • z – mesh points along growth direction (units: m)
  • E_e – Electron state energy (units: J)
  • E_hh – Heavy hole state energy (units: J)
  • psi_e – Electron envelope function (psi_e^2 must be normalised)
  • psi_hh – Heavy hole envelope function (psi_hh^2 must be normalised)
  • well_width – (units: m)
  • me – electron effective mass (units: kg)
  • mhh – heavy hole effective mass (units: kg)
  • Ep – the Kane parameter “Optical dipole matrix elemet”, sometimes “Momentum matrix element”, e.g. Ep for GaAs ~ 28eV
  • nr – refractive index
Returns:

solcore.absorption_calculator.absorption_QW.alpha_exciton_ehh_TE(exciton_index, E, z, E_e, E_hh, psi_e, psi_hh, well_width, me, mhh, Ep, nr, eps, hwhm=9.6e-22, dimensionality=0.15, line_shape='Lorenzian')[source]
Parameters:
  • exciton_index
  • E
  • z
  • E_e
  • E_hh
  • psi_e
  • psi_hh
  • well_width
  • me
  • mhh
  • Ep
  • nr
  • eps
  • hwhm
  • dimensionality
  • line_shape
Returns:

solcore.absorption_calculator.absorption_QW.alpha_exciton_elh_TE(exciton_index, E, z, E_e, E_lh, psi_e, psi_lh, well_width, me, mlh, Ep, nr, eps, hwhm=9.6e-22, dimensionality=0.15, line_shape='Lorenzian')[source]
Parameters:
  • exciton_index
  • E
  • z
  • E_e
  • E_lh
  • psi_e
  • psi_lh
  • well_width
  • me
  • mlh
  • Ep
  • nr
  • eps
  • hwhm
  • dimensionality
  • line_shape
Returns:

solcore.absorption_calculator.absorption_QW.sum_alpha_c_hh_TE(E, z, E_e, E_hh, psi_e, psi_hh, well_width, me, mh, Ep, nr)[source]
Parameters:
  • E
  • z
  • E_e
  • E_hh
  • psi_e
  • psi_hh
  • well_width
  • me
  • mh
  • Ep
  • nr
Returns:

solcore.absorption_calculator.absorption_QW.sum_alpha_c_lh_TE(E, z, E_e, E_lh, psi_e, psi_lh, well_width, me, mh, Ep, nr)[source]
Parameters:
  • E
  • z
  • E_e
  • E_lh
  • psi_e
  • psi_lh
  • well_width
  • me
  • mh
  • Ep
  • nr
Returns:

solcore.absorption_calculator.absorption_QW.sum_alpha_exciton_c_hh_TE(E, z, E_e, E_hh, psi_e, psi_hh, well_width, me, mh, Ep, nr, eps, hwhm=9.6e-22, dimensionality=0.5, line_shape='Lorenzian')[source]
Parameters:
  • E
  • z
  • E_e
  • E_hh
  • psi_e
  • psi_hh
  • well_width
  • me
  • mh
  • Ep
  • nr
  • eps
  • hwhm
  • dimensionality
  • line_shape
Returns:

solcore.absorption_calculator.absorption_QW.sum_alpha_exciton_c_lh_TE(E, z, E_e, E_lh, psi_e, psi_lh, well_width, me, mlh, Ep, nr, eps, hwhm=9.6e-22, dimensionality=0.5, line_shape='Lorenzian')[source]
Parameters:
  • E
  • z
  • E_e
  • E_lh
  • psi_e
  • psi_lh
  • well_width
  • me
  • mlh
  • Ep
  • nr
  • eps
  • hwhm
  • dimensionality
  • line_shape
Returns:

solcore.absorption_calculator.absorption_QW.calc_alpha(QM_result, well_width, kane_parameter=4.48e-18, refractive_index=3.5, hwhm=9.6e-22, dimensionality=0.5, theta=0, eps=1.1421902283930001e-10, espace=None, line_shape='Lorenzian')[source]

Calculates the absorption coeficient of a quantum well structure assuming the parabolic approximation for the effective masses.

Parameters:
  • QM_result – The output of the Schrodinger solver, incldued in the ‘quantum_mechanics’ package
  • well_width – The well width
  • kane_parameter – The Kane parameter
  • refractive_index – Refractive (effective) index of the QW
  • hwhm – Full width at half maximum of the excitonic lineshape
  • dimensionality
  • theta
  • eps
  • espace
  • line_shape
Returns:

solcore.absorption_calculator.absorption_QW.NonBlackBodyEmission(E, voltage=0, nr=3.5, T=300)[source]
Parameters:
  • E
  • voltage
  • nr
  • T
Returns:

solcore.absorption_calculator.absorption_QW.calc_emission(QM_result, well_width, voltage=0, theta=0)[source]
Parameters:
  • QM_result
  • well_width
  • voltage
  • theta
Returns:

References

[1](1, 2) Chuang, S.L.: Physics of Optoelectronic Devices. Wiley- Interscience, New York (1995)
[2]Barnham, K., Vvedensky, D. (eds.): Low-Dimensional Semi- conductor Structures: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2001)
[3]Klipstein, P.C., Apsley, N.: A theory for the electroreflectance spec- tra of quantum well structures. J. Phys. C Solid State Phys. 19(32), 6461–6478 (2000)