Searching the refractiveindex.info database and comparing materials =================================================================== .. image:: Ag_n.png :width: 40% .. image:: Ag_k.png :width: 40% .. image:: Ag_GaAs_abs.png :width: 40% .. code-block:: Python from solcore.absorption_calculator.nk_db import download_db, search_db from solcore import material from solcore import si from solcore.solar_cell import SolarCell from solcore.structure import Layer from solcore.solar_cell_solver import solar_cell_solver, default_options import numpy as np import matplotlib.pyplot as plt wl = si(np.arange(100, 900, 10), 'nm') opts = default_options opts.optics_method = 'TMM' opts.wavelength = wl # Download the database from refractiveindex.info. This only needs to be done once. # Can specify the source URL and number of interpolation points. # download_db() # Can search the database to select an appropriate entry. Search by element/chemical formula. # In this case, look for silver. search_db('Ag', exact = True) # This prints out, line by line, matching entries. This shows us entries with # "pageid"s 0 to 14 correspond to silver. # Let's compare the optical behaviour of some of those sources: # (The pageid values listed are for the 2021-07-18 version of the refractiveindex.info database) # pageid = 0, Johnson # pageid = 2, Jiang # pageid = 4, McPeak # pageid = 10, Hagemann # pageid = 14, Rakic (BB) # create instances of materials with the optical constants from the database. # The name (when using Solcore's built-in materials, this would just be the # name of the material or alloy, like 'GaAs') is the pageid, AS A STRING, while # the flag nk_db must be set to True to tell Solcore to look in the previously # downloaded database from refractiveindex.info Ag_Joh = material(name='0', nk_db=True)() Ag_Jia = material(name='2', nk_db=True)() Ag_McP = material(name='4', nk_db=True)() Ag_Hag = material(name='10', nk_db=True)() Ag_Rak = material(name='14', nk_db=True)() Ag_Sol = material(name='Ag')() # Solcore built-in (from SOPRA) names = ['Johnson', 'Jiang', 'McPeak', 'Hagemann', 'Rakic', 'Solcore built-in'] plt.figure(figsize=(8,4)) plt.subplot(121) plt.plot(wl*1e9, np.array([Ag_Joh.n(wl), Ag_Jia.n(wl), Ag_McP.n(wl), Ag_Hag.n(wl), Ag_Rak.n(wl), Ag_Sol.n(wl)]).T) plt.legend(labels=names) plt.xlabel("Wavelength (nm)") plt.title("(2) $n$ and $\kappa$ values for Ag from different literature sources") plt.ylabel("n") plt.subplot(122) plt.plot(wl*1e9, np.array([Ag_Joh.k(wl), Ag_Jia.k(wl), Ag_McP.k(wl), Ag_Hag.k(wl), Ag_Rak.k(wl), Ag_Sol.k(wl)]).T) plt.legend(labels=names) plt.xlabel("Wavelength (nm)") plt.ylabel("k") plt.show() # Compare performance as a back mirror on a GaAs 'cell' # Solid line: absorption in GaAs # Dashed line: absorption in Ag GaAs = material('GaAs')() colors = ['k', 'r', 'g', 'y', 'b', 'm'] plt.figure() for c, Ag_mat in enumerate([Ag_Joh, Ag_Jia, Ag_McP, Ag_Hag, Ag_Rak, Ag_Sol]): my_solar_cell = OptiStack([Layer(width=si('50nm'), material = GaAs)], substrate=Ag_mat) RAT = calculate_rat(my_solar_cell, wl*1e9, no_back_reflection=False) GaAs_abs = RAT["A_per_layer"][1] Ag_abs = RAT["T"] plt.plot(wl*1e9, GaAs_abs, color=colors[c], linestyle='-', label=names[c]) plt.plot(wl*1e9, Ag_abs, color=colors[c], linestyle='--') plt.legend() plt.xlabel("Wavelength (nm)") plt.ylabel("Absorbed") plt.title("(3) Absorption in GaAs depending on silver optical constants") plt.show()